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LETTER TO THE EDITOR 

Analytical expressions for the matrix elements of the 
non-compact symplectic algebra 
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t Institut fur Theoretische Physik, Johann Wolfgang Goethe Universitat, 6000 Frankfurt 
am Main, Germany 
$ Department of Physics, Tulane University, New Orleans, LA 701 18, USA 
8 Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada 

Received 7 March 1984 

Abstract, Analytic matrix elements are derived for all the lowest weight representations 
of the non-compact symplectic algebra sp(3, R). It is shown that the expressions are exact 
for representations of the type ( a ,  = a2 = a3) and for all states of an arbitrary representation 
that are multiplicity free with respect to the u(3) subalgebra. Furthermore they are remark- 
ably accurate in general. 

The symplectic group Sp(3, R )  is best known as the dynamical group of the three- 
dimensional harmonic oscillator (Wybourne 1974). However, it is also the dynamical 
group of a nuclear collective model (Rosensteel and Rowe 1977a). The representations 
that occur in the latter application are the lowest weight representations (Godement 
1958, Rosensteel and Rowe 1977b) indexed by a triple of integers or semi-integers, 
( U , ,  uz, u3). In the past, matrix elements of the sp(3, R )  algebra were calculated numeri- 
cally for these representations (Rosensteel 1980, Rosensteel and Rowe 1983). Recently 
Castaiios et aZ(1983) gave analytic expressions for the case ( U ,  = u2 = a3). In this letter, 
we show that their results are a special case of a general analytic expression that gives 
exact matrix elements whenever the states involved are multiplicity free. This includes 
all the states of a (a , = u2 = u3) representation and many states for a generic representa- 
tion. It is further demonstrated that the analytic expression is remarkably accurate 
even for states with multiplicity, and is more than adequate, for practical purposes, 
for the larger U representations that occur in nuclear physics applications (Park et al 
1984) for example. However, when greater accuracy is required, the analytic expression 
provides a good first approximation for a precise numerical calculation (Rosensteel 
and Rowe 1983). The coherent state equations can also be solved exactly (Rowe 1983). 

Except for the symplectic Lie algebras, analytic formulae for the matrix elements 
of the classical Lie algebras have been known for some time. In particular, the classic 
work of Gel’fand and Tseitlin (1950a, b) gave formulae for the finite-dimensional 
representations of the unitary and orthogonal Lie algebras and, by analytic continuation 
(Gel’fand and Graev 1965, Lemire and Patera 1979), of their non-compact forms. 
Although we consider only sp(3, R )  in this letter, our technique easily extends to 
arbitrary sp(n, R )  and has the advantage that it explicitly separates out the u(n) iso- 
scalar factor (Baird and Biedenharn 1963). 

11 On leave from the University of Toronto. 
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The strategy is to use coherent state theory (Bargmann 1972) to relate the sp(3, R )  
algebra to a simpler u(3)-boson algebra, whose matrix elements are known (Rosensteel 
and Rowe 1983). A formulation of the coherent state theory of Sp(3, R )  is presented 
in Rowe (1983). 

A familiar realisation of the sp(3, R )  algebra (Rosensteel and Rowe 1977a) is given 
by the basis A,) = Z,, b:,bi1, B ,  = 2 ,  b,,b,, C, =iZ, ( b i l b ,  + b,bi,), where i ,  j = 1, 2, 3 
and (bLl, b,,) are Weyl boson operators. From the boson commutators [b,,,  b&] = S,,S, 
one readily infers the sp(3, R )  structure. A coherent state realisation of this basis 
(Rowe 1983) is given by 

r ( A , ) = ( @ z ) ,  +(Cz), ,  -42, + ( z V z ) , / ,  

r ( B , )  = V , ,  w,) = C ,  + ( z v ) , ,  (1) 

where ( z , )  is a symmetric 3 x 3  array of six linearly independent complex variables, 
V , ,  = ( 1  + G , , ) d / d z ,  and (e,,) are a basis for an 'intrinsic' u(3) algebra with [C,, Z l k ]  = 
[C,, V l k ]  = 0. Note that we use matrix notation so that, for example, ( z V ) , ,  = x k  z,kvkl. 

One can readily ascertain that [T(X), r( Y)] = r([X, Y ] ) ,  confirming that r is a reali- 
sation. 

Now it has been shown by Rosensteel and Rowe (1982a,b) that, as u + a ,  the 
sp(3, R )  algebra contracts to a u(3)-boson algebra 

B, + J2a a,, c, +C,/ (2) 
I- t A,/ + 2u a,/, 

where a', and a, are Weyl boson operators satisfying 

and U is the value of the intrinsic U( 1) operator f Tr C .  
The coherent state realisation of the u(3)-boson algebra, parallel to equation (l), 

r(ab) = ' I ] ,  r(a,) = v,, r(C,) = @, + ( Z V ) , ,  ( 4 )  

reveals the very close relationship between the two algebras. 
of sp(3, R )  defines an action of the sp(3, R )  algebra on 

u(3)-boson coherent state wavefunctions. However, since the Hermitian adjoint of V ,  
is zlJ, with respect to the u(3)-boson measure, it is evident that r is not unitary: i.e. 
r(A,)' # r( BV). T o  obtain a unitary realisation, we therefore seek a transformation 

Evidently the realisation 

" ( x )  = K - ' r ( X ) K ,  x E sp(3, R ) ,  ( 5 )  

T(A,) = K'z, ,K-*.  (6) 

= L A ,  z8/1, (7) 

with K = K +  a u(3) scalar. The requirement of unitarity, y(B,)-  = y ( A , ) ,  then implies 

Now, one can show, by direct substitution, that 

where A is the u(3) scalar operator 

A = Tr[( C + zV) (  C + z V ) ]  + f Tr(C) Tr(zV) - a Tr(zVzV) - Tr(zV),  

C = C - f Tr (C).  
(8) 
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Thus we obtain, from equation (6), the equation for K 

(9) 2 -2 [A, Zlj]= K ZijK . 
We also obtain the manifestly unitary expression of y for sp(3, R )  

To solve equation (9) for K,  we consider first the matrix elements of zij and A. A 
u(3)-boson representation is characterised by the U(3) quantum numbers U = (al, u2, a3) 
of its boson vacuum state la) (Rosensteel and Rowe 1982a, b). A basis for the 
representation is constructed by first combining boson raising operators into u(3) tensors 
of rank n = (n,, n,, n3) and then coupling the tensors to the boson vacuum state to form 
an orthonormal basis of states lanpw) of total 4 3 )  symmetry w = ( U , ,  w2, w 3 )  with 
multiplicity p. Matrix elements of the boson operators in this basis are given by 
Rosensteel and Rowe (1983), 

(cf. also Quesne 1981) and U is an SU(3) Racah coefficient (Draayer and Akiyama 1973). 
A is conveniently diagonal in this basis with eigenvalues, independent of p, 

~ ( a n w ) = ( a -  I )  I n, +f (w l  -a )2+2w1 -2w3 ) - f (  7 nf +2nl-2n3 1 0 (13) 

with U =$(aI +a2 +a3). Thus, if \Ilnnpw is the coherent state wavefunction for state 
lanpo), then, from equation (4), 

(*un'p'w I I z I1 (Lonpw 1 = (on ' P  ' w ' II a I1 anpw 1 

( ~ u n ~ p ~ w ,  I( [A 23 I) * c n p u >  = ( W a n  'w  '1 - W a n w  >)(an ' P  'U ' II a t  I/ anpw).  

(14) 

(15) 

We now consider the RHS of equation (9). Since K is a U(3) scalar, it has vanishing 
matrix elements between states of different w. In general, states of given w occur with 
multiplicity indexed by np. It follows that any state w that is multiplicity free must 
be an eigenstate of K .  Hence, if w and w '  are both multiplicity free, we obtain from 
equations (9) and (1 5 )  

( K 2( U ' ) /  K ' (w) ) (an  ' p 'w  ' 1 1  at 11 anpw)  = (R(an ' U ' )  - R(anw))( an ' p 'w  ' 11 a' 11 anpw).  

and hence 

( 16) 
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From equation (lo), it then follows that, for multiplicity free states, 

which is the desired analytic relationship. 
Equation (17) gives all the matrix elements, consistent with Castafios et al (1983), 

for representations of the type (aI = a2 = a,) since they contain only multiplicity free 
states. However, it also gives precisely the matrix elements between all multiplicity 
free states for arbitrary (ul ,  u2, u3). 

Finally, we note that K is also diagonal in the above basis for any (ul, u2, a,) in 
the large a limit. If then we make the approximation of assuming that K is diagonal, 
in general, we obtain equation (17) for all matrix elements. 

Tables 1-4 give some matrix elements calculated with equation (17), both for states 
with and without multiplicity. They are compared with matrix elements calculated in 
the u(3)-boson limit and with exact elements computed numerically (Rosensteel and 
Rowe 1983). Tables 1-2 show results for the N,(A,pc) = 24.5(0,4) representations, 
appropriate for a description of rotational bands in  the light I2C nucleus, while tables 

Table 1. Some basis states for the representation N,(A,pL,) = 24.5(0,4). 

Index n w Index n w 

Table 2. Approximate and exact sp(3, R )  matrix elements for the 24.5(0,4) representation. 

Index (fllAll.ij 

I j u(3)-boson Approx Exact 

4.042 
4.042 
4.042 
3.810 

-3.300 
2.694 
1.6102 
4.4622 
3.1879 

4.3589 
3.4641 
2.6458 
2.6667 

-3.1623 
2.9814 
0.8909 
3.8247 
3.2523 

4.3589 
3.4641 
2.6458 
2.6638 

-3.1615 
2.9848 
0.8993 
3.8254 
3.2493 

Table 3. Some basis states for the representation 733(82,0). 

Index n w Index n w 

13 (2,292) (301,219,219) 32, 1 (4 ,2 ,2)  (301,221,219) 
16 ( 4 3 2 0 )  (301,221,217) 32,2 (4,4,0)  (301,221,219) 
18 ( 4 , L  0) (301,220,218) 32,3 (6.2,O) (301,221,219) 
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Table 4. Approximate and exact sp(3, R )  matrix elements for the 733(82,0) representation. 

I j u(3)-boson Approx Exact 

32, 1 
32, 1 
32, I 
32,2 
32,2 
32,2 
32,3 
32, 3 
32, 3 

13 
16 
18 
13 
16 
18 
13 
16 
18 

- 

27.07 
21.52 

7.64 
0 

13.13 
-23.30 

0 
I .27 

11.23 

25.514 70 
20.236 69 

7.214 37 
0 

12.306 76 
-21.93747 

0 
1.181 77 

10.533 18 

25.514 69 
20.236 67 

7.21437 
-0.000 01 
12.306 78 

-21.937 47 
0.000 02 
1.181 78 

10.533 18 

3-4 show results for the 733(82,0) representation, used for the heavy 154Sm nucleus. 
(Note that Nu = a, + u2 + a3.) It is seen that the (approximate) matrix elements obtained 
with the analytical formula are exact for multiplicity free states and remarkably accurate 
in general. For the '54Sm representation, the approximation is accurate to -2 parts 
in lo6 and even for '*C the results are accurate to a fraction of 1 % .  Note too that, 
for any representation, the 0 and 2hw states are always multiplicity free. Thus the 
analytical formula is extremely useful and, for most practical applications, at least in 
nuclear physics, it is as good as exact. 

It is shown in Rowe (1983) that equation (17) is accurate to terms of the order 
[(Au +pU)/2al4.  It is also shown how exact results can be obtained when this level of 
accuracy is inadequate. 
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